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In the present article we show how models for simple liquids can be used to describe the
dynamics of atoms in molecular liquids within the rigid molecule approximation. We show in
particular that the atomic masses are to be replaced by the corresponding Sachs-Teller masses
and we derive a formal expression for the so-called Einstein frequency. The approach is illus-
trated for a model which has been originally developed for simple liquids and which has been
used in the past to analyze quasielastic neutron scattering data from pure water and dilute
aqueous solutions of apolar molecules. We obtain a remarkable agreement with results from mo-
lecular dynamics simulations not only in the quasielastic, diffusive regime, but also in the
inelastic regime corresponding to intermolecular vibrations and fast molecular librations.

1. Introduction

A deeper understanding of the dynamics of liquids is still a challenging task and
many discoveries are still to be expected, although considerable progress has
been undoubtedly made, in particular through molecular dynamics (MD) simula-
tions. In this context the work of Rahman is to be cited in the first place. His
pioneering simulation of liquid argon [1] was an important step for the develop-
ment of models for simple liquids, a survey of which can be found in several
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monographs [2,3,4]. Of particular interest for the theory of liquids and com-
plex molecular systems in general is the Generalized Langevin equation, which
leads to a rigorous description of the relaxation of time correlation functions on
the basis of a projection formalism [5,6,7,8]. The so-called memory function is
the cornerstone in this context. Although its direct calculation is as unfeasible as
the solution of the Hamiltonian equations of motion for a given system, it turns
out to be very useful for the development of models for the dynamics of liquids.
One of the first memory function-based models for the velocity autocorrelation
function of simple liquids [9] showed that even a simple model for the memory
function yields a qualitatively correct behavior of the associated time correlation
function.

Most of the models for the dynamics of liquids which have been developed
in the past concern so-called simple liquids, like liquid argon, the constituents
of which are atoms. The use of such models for complex liquids, such as poly-
mers and proteins in solution, does not pose a problem in principle, as long as
these systems can be considered as mixtures of simple liquids. This requires the
absence of rigid units or sub-units, in which certain atoms are connected through
stiff bonds. One might argue that models for molecular liquids involving rigid
or semi-rigid molecules should simply not be used to keep the theoretical frame-
work as simple as possible, but the rigid molecule approach is not only a theoreti-
cal concept but also a physical reality if one considers, for example, the scattering
of thermal neutrons by molecular liquids. If the energy of the neutrons is not
sufficient to excite molecular vibrations, the molecules appear as rigid in the
scattering process. These considerations lead Sachs and Teller to introduce ef-
fective masses for atoms in rigid molecules when they studied the scattering of
neutrons by molecular gases [10]. The same situation arises in todays neutron
scattering studies of the dynamics of molecular liquids, such as liquid water or
ice, where neutrons of moderate energy are used. This is typically the case for
quasielastic neutron scattering (QENS) studies, which probe the diffusive dy-
namics of the molecules. Due to the dominant cross section for incoherent scat-
tering of the hydrogen atoms, one sees effectively the dynamics of a "liquid of
hydrogen atoms" in such experiments. To be able to use theoretical models de-
signed for simple liquids for the interpretation of such experiments one needs,
for example, the mean square velocity of a hydrogen atom in a rigid molecule.
It has been shown by one of us (GRK) that thermal averaging in velocity space
in presence of rigid-body constraints leads to the standard expression for the
mean square velocity of a particle in a simple liquid if the atomic mass is re-
placed by the Sachs-Teller mass [11]. This result has been used in a MD simula-
tion study of liquid water [12], in which we applied the concept of effective
atomic masses to refine a memory-function based model for the single particle
dynamics in liquids, in order to describe the dynamics of the hydrogen atoms in
water within the rigid molecule approximation. The original model has been used
before by two of us (VC and AD) to interpret QENS experiments on water and
aqueous solutions of apolar molecules [13,14]. Here we review and extend the
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theoretical considerations, giving also a formal expression for the so-called Ein-
stein frequency of atoms in liquids consisting of rigid or semi-rigid molecules,
and, compared to [12], we present supplementary simulation results and an im-
proved method for the calculation of higher order memory functions.

The article is organized as follows: In Section 2 we present the theoretical
background and Section 3 contains short description of the simulation protocol,
as well as a presentation of the numerical calculation of memory functions from
MD simulations. The results are discussed in Section 4 and the paper is con-
cluded by a short summary of the results.

2. Theoretical background

2.1 Generalized Langevin equation and memory functions

It has been shown in a very general way [5,6,8] that the equation of motion for
a given dynamical variable A(t) can be written as

(1)

where ωA is a proper frequency, fA(t) is a "projected force", and MA(t) =
) fA(0)fA(t) *) A A *

–1 is the memory function. The projected force has the funda-
mental property ) fA(t)A(0) * = 0, which allows deriving a closed equation for
the autocorrelation function cAA(t) = ) A*(0)A(t) *,

(2)

If one assumes that cAA(t) is a classical autocorrelation function, as we do in this
article, it follows that cAA(t) = cAA(–t) and consequently c· AA(0) = iωA = 0. We
may thus set ωA = 0 from now on. The Laplace transform of cAA(t), defined as
ĉAA(s) = E0

tdt exp(–st) cAA(t) (R{s} > 0), takes the particularly simple algebraic
form

(3)

which may be used to set up a hierarchical scheme by introducing higher order
memory functions. The idea is to treat the projected force fA(t) in a way entirely
analogous to the one established for A(t), defining second-order fluctuating for-
ces and memory functions. The result is similar to Eq. (3), with ĉAA(s) replaced
by M̂A(s), and with ωA and M̂A(s) replaced by their second-order counterparts.
Substituting this result for M̂A(s) into Eq. (3) and iterating the procedure to
arbitrary order one finally gets a representation of ĉAA(s) in form of a continued
fraction, as derived by Mori [7].
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(4)

Here M(n)(0) denotes the initial value of the n-th order memory function.

2.2 A model for the dynamics of liquids

In the following we consider the intermediate scattering function for single parti-
cle motion,

(5)
where Fs(q,t) h cAA(t), A(t) = exp(iqx(t)), x is a Cartesian component of the
position of a tagged scattering atom, and q is the momentum transfer from the
neutron to the sample. Here we suppose that the system is isotropic, which im-
plies that all directions in space are equivalent. The dynamics of Fs(q,t) is de-
scribed by a second order Mori-Ansatz, such that

(6)

with Fs(q,0) = 1. The initial values for the memory functions are related to the
Taylor coefficients for the short time expansion of Fs(q,t) ("sum rules") [2,4],
and one may write

(7)

(8)

Here v = x· is the time derivative of the Cartesian position coordinate x appearing
in the intermediate scattering function (5), and Ω is the "Einstein frequency",

(9)

We note that Ω2 is the initial value of the memory function associated with the
velocity autocorrelation function (VACF), cvv(t) = ) v(t)v(0) *. Writing

(10)

we have

(11)

The choice of a second order Mori ansatz for Fs(q,t) can be motivated by
the equation of motion corresponding to relation (6),

(12)
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Setting M(2)(q,t) = τ(q)–1δ(t), Eq. (12) takes the form of the equation of motion
of a damped harmonic oscillator, with a relaxation constant γ(q) = τ(q)–1 and an
angular frequency q2

) v2
*, describing the short-time dynamics of Fs(q,t).

For the second order memory function a model including two relaxation
processes has been put forward, which has been used in particular for the inter-
pretation of incoherent quasi-elastic neutron scattering from pure water [15,16]
and from dilute aqueous solutions of apolar molecules [17,13,14],

(13)
Here τ1 and τ2 are the characteristic times concerning "fast" relaxation processes
due to intermolecular collisions and "slow" structural relaxation processes, re-
spectively, and the parameter α verifies 0 ≤ α ≤ 1. The dependence on q of these
parameters is here omitted. Using expression (6) together with the initial values
of the first and second order memory function, which are given by Eqs. (7)
and Eqs. (8), respectively, one obtains the following expression for the Laplace
transformed intermediate scattering function:

(14)

The above expression leads to a rational function for F̂s(q,s), exhibiting four
poles in the s-plane, and the intermediate scattering function is thus a weighted
sum of four (possibly complex) exponential functions. By construction, such a
model will work for a certain time window, which is set by the relaxation times
and frequencies obtained from the poles of F̂s(q,s). One must be aware that
hydrodynamic long-time tails, which manifest themselves through an algebraic
decay of correlation functions in the limit of infinite time, cannot be obtained in
a mathematical sense, i.e. in the formal limit t / ∞.

Eq. (14) is the starting point to derive various quantities which are relevant
to neutron scattering. Using that Fs(q,t) is symmetric in time, the dynamic struc-
ture factor takes the form

(15)

The VACF can be obtained from the relation cvv(t) = –limq/ 0 q–2∂t
2 Fs(q,t).

With Fs(q,0) = 1 and ∂t Fs(q,0) = 0 one obtains for the Laplace transform

(16)

The above expression yields the Fourier transform of the VACF, known as
"density of states" (DOS), via

(17)

Bereitgestellt von | Forschungszentrum Jülich
Angemeldet

Heruntergeladen am | 24.04.18 16:03



962 V. Calandrini et al.

From the Kubo relation D = E0
∞dt cvv(t) = ĉvv(0) one obtains the following

expression for the diffusion coefficient of the model,

(18)

Using that the Laplace transformed VACF may be written in the form ĉvv(s) =
) v2

*(s+M̂(1)
v(s))–1, where M̂(1)

v(s) is the Laplace transform of the corresponding
first order memory function, it follows that

(19)

where γv is the friction constant, which is defined as

(20)

Here one can make use of the identity

(21)
which follows from the time derivative of Eq. (12) and from the relation cvv(t) =
Klimq/ 0 q–2∂t

2 Fs(q,t). With F
·

s(q,0) = 0 and F
·

s(0,t) = 0, one obtains

(22)

which proves relation (21). Using the general form (13) for the second order
memory function of Fs(q,t) and that M(2)(0,0) = Ω2 according to relation (8), it
follows thus that

(23)

The corresponding friction constant is given by

(24)
and may be inserted into relation (19) to retrieve expression (18) for the diffusion
coefficient of the model.

2.3 Rigid molecule approximation

2.3.1 Mean square velocity of a selected atom

In the model described previously the mean square velocity, ) v2
*, is one of the

parameters. We recall that v is actually one Cartesian component of the velocity
v. For a simple liquid the calculation of the mean square velocity is straightfor-
wardly obtained from the average ) v2

* = E–∞
+∞dv v2 p(v), where p(v) is the

Maxwell distribution, p(v) = √[(2π).(M�)]exp(–M�.2]v2), with � = (kBT)–1, kB
being the Boltzmann constant, T the absolute temperature, and M the mass of
the particle. One obtains the well known result ) v2

* = kBT.M.
Consider now a molecule consisting of N atoms, which are linked by s geo-

metrical constraints with s ≤ 3N,
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(25)

where hk
(0) = const. Here r is a column vector of length 3N which comprises all

Cartesian coordinates of the N atoms. We note that rigid body constraints in the
form (25), where s = 3N–6, may be achieved through a combination of quadratic
bond constraints and linear constraints for the atomic positions [18]. Differentia-
tion of (25) yields a set of s constraints for the velocity components of the atoms
in the molecule,

(26)
where v = r· and A is a s!3N dimensional matrix whose elements are given by

(27)

Eq. (26) shows that v is in the null space of A, which will be denoted V
- -

in the
following. Its dimension is the number of degrees of freedom, dim(V

- -
) = 3N–

rank(A), where rank(A) ≤ s. If all constraints are independent, rank(A) = s. The
orthogonal complement of V

- -
is denoted Vt and dim(Vt) = rank(A).

It is clear that geometrical constraints will create dependencies among the
velocity components. For purposes of thermal averaging one must therefore con-
sider a modified Maxwell distribution involving the velocities of all atoms in
the molecule. To construct this distribution function it is convenient to introduce
the projectors on V

- -
and Vt, which are given by

(28)

(29)
respectively, where A+ denotes the pseudoinverse of A [19,20]. Numerically A+

can be obtained from the singular value decomposition (SVD) [21] of A. If A

has full rank s, its pseudoinverse can be given explicitly,
(30)

where the superscript "T" denotes a transposition.
With the above prerequisites and following the lines in Ref. [11] (here for

the velocities and not for the momenta), the modified Maxwell distribution takes
the form

(31)

where Mc is the projection of the diagonal mass matrix,

(32)
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onto the subspace V
- -

,

(33)
and the Dirac distribution accounts for the velocity constraint (26) which may
be written in the alternative forms P

- -
v = v and Ptv = 0. One derives from the

constrained Maxwell distribution (31) that [11]

(34)
In case that rank(A) = s, the matrix Mc

+ can be expressed in the form [11]

(35)
In order to obtain the mean square velocity of individual atoms, the matrix Mc

+

is partitioned in 3!3 block matrices,

(36)

For a tagged atom α one has thus ) vαvα
T

* = kBT mαα
+, and it follows that the

mean square velocity is given by

(37)
The effective mass Mα,eff can be defined through the relation ) vα

Tvα * = 3kBT.

Mα,eff, leading to

(38)

Noting that the mean square velocity ) v2
* appearing in the dynamical model

introduced in Section 2.2 concerns the projection of v onto a unit vector in an
arbitrary direction, we have thus

(39)

2.3.2 Einstein frequency

The other basic parameter in the dynamical model for the intermediate scattering
function is the Einstein frequency, which is defined by Ω2 = ) v· 2

*.) v2
* and

which is the initial value of the memory function associated with the VACF.
The derivation of an analytical expression for the Einstein frequency of an atom
in a rigid molecule involves thus the calculation of its mean square acceleration
in presence of geometrical constraints. Formally, such an expression can be
given. For this purpose one derives constraints for the accelerations of the atoms
in a (semi)rigid molecule by differentiating relation (26) with respect to time.
This yields an expression of the form
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(40)
where the vector b reads

(41)
Starting from Newton's equations of motion,

(42)
where f comprises the external forces acting on the atoms in the molecule under
consideration and z are the constraint forces, one can derive an explicit expres-
sion for the vector of accelerations [22],

(43)
where A+ and Mc

+ are given by (30) and (35), respectively. To extract the accel-
eration of atom α from (43) we introduce the 3!3N matrix Sα

(44)

such that

(45)
The Einstein frequency of a tagged atom α may then be written as

(46)

3. Molecular Dynamics simulation and analysis

3.1 MD simulation

For the present study of the dynamics of liquid water we have performed MD
simulations of 256 water molecules in a cubic box of edge length 1.9552 nm in
the thermodynamic NpT-ensemble at a temperature of T = 300 K and a pressure
of 1 bar, using the SPC.E potential [23] and Ewald summation for long-range
electrostatic interactions. Within the SPC.E model the water molecules are
treated as rigid bodies which are composed of point masses, carrying each an
electric charge. Only the oxygen atoms carry in addition a center for interactions
of Lennard-Jones type. All simulations have been performed with the simulation
program DL_POLY (version 2) [24], using a simulation time step of 1 fs. In
order to be able to study slow diffusive motions of water molecules on one hand,
resolving on the other hand at the same time the first order memory function
sufficiently well for short times, we used an MD trajectory of 100 ps with a
sampling interval of 10 fs. For the calculation of second order memory functions
we created a short trajectory of 20 ps with a sampling interval of 2 fs.
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3.2 Calculation of higher order memory functions

To calculate higher order memory functions we start from Eq. (2), replacing the
autocorrelation function c(t) (the index AA is omitted) by the memory function
of order n–1 and setting ωA = 0,

(1)

where n ≥ 1 and M(0)(t) h c(t). The discretized form of this integro-differential
equation reads

(2)

where M(k) h M(kΔt) (k 2 Z). Applying a one-sided z-transform to (2), which
is defined through

(3)

one obtains

(4)

In the following it is supposed that the memory function M(n–1)(k) is already
known. Starting from the first level in this hierachy of calculations, the basic
quantity to know is the correlation function c(t) h M(0)(t). To estimate c(t)
(and its Fourier spectrum) from MD trajectories we use autoregressive (AR)
modeling [25] for the time series of the underlying dynamical variables. The
calculation of autocorrelation functions within the AR model is described in
Ref. [26].

Using the definition (3) of the z-transform together with Eq. (4), one obtains
the relation

(5)

Note that the term proportional to z cancels out. The time dependent memory
function is, in principle, obtained by comparing the coefficients of the series on
the lhs and the rhs of Eq. (5). To construct a numerical method we replace the
series by polynomials of order N, where T = NΔt defines the time window for
the memory function to be computed. After this first step a polynomial division
is performed on the rhs of Eq. (5), and after a subsequent multiplication of
both sides with z–N one obtains the time dependent memory function, M(n)(j), by
comparison of coefficients,
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(6)

The coefficients cj are obtained by polynomial division and R is a rest which
does not contain information on the memory function within the time interval t
2 [0,T]. The discrete memory function is therefore given by M(n)(j) = cN–j.

In contrast to the method described in [26], the above scheme for the calcula-
tion of memory functions is more stable from a numerical point of view and
does not require the use of program packages for calculations with extended
precision. It allows, moreover, to obtain memory functions of arbitrary order
within the same numerical scheme. The only limitation is the due to the finite
resolution of the time correlation function which is used as starting point for
the calculations. As mentioned earlier, higher order memory functions decay
increasingly rapidly, and one arrives quickly at the point where the time resolu-
tion is not fine enough to reconstruct them. If one is interested in memory func-
tions of order n > 3, one might be forced to use time steps which are smaller
than those usually used for MD simulation.

4. Results and discussion

4.1 Dynamics of the hydrogen and oxygen atoms

In a first step we analyzed separately the dynamics of the oxygen and hydrogen
atoms, considering for both types of atoms the respective intermediate scattering
function and the associated memory function. Both intermediate scattering func-
tions have been averaged over the respective number of equivalent atoms. The
analysis was motivated by the interpretation of quasielastic neutron scattering
data in [13], where the analytical model described in Section 2.2 has been used
with a point-like representation of the water molecules. Here only the center-of-
mass dynamics was considered, which can be approximately identified with the
dynamics of the oxygen atoms. Although it is the incoherent scattering from
hydrogen which dominates quasielastic neutron scattering spectra, this approach
is justified if one is interested in the slow long range diffusive dynamics only,
to which the fast relative motions of the hydrogen atoms about the respective
centers of mass do not contribute. Fig. 1 illustrates this point. Using a point-like
representation of the water molecules yields a good fit of the quasielastic part of
the dynamic structure factor at q = 10 nm–1, which deviates, however, considera-
bly from the MD results in the inelastic part of the spectrum. In Ref. [13] the
mean square velocity in the model was fixed through ) v2

* = kBT.M, where M
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Fig. 1. Incoherent dynamic structure factor from MD simulation at q = 10 nm–1 (solid line) and
fit of the analytical model, using the molecular mass as mass of the scattering particle (broken
line). The inset shows the first order memory function of the intermediate scattering function
for the hydrogen atoms (solid line), the corresponding quantity for the oxygen atoms (broken
and dotted line), and first order memory function corresponding to the fitted intermediate scat-
tering function (broken line).

is the molecular mass. The Einstein frequency was treated as a fit parameter,
which was initialized by the theoretical value obtained from the expression [4]

(1)

Here UOO(r) is the oxygen-oxygen potential taken from the SPC.E MD force
field, n is the molecular density of water, and gOO(r) is the oxygen-oxygen pair
correlation function obtained from MD simulation (not shown here). We note
here that (1) involves formally two approximations, (a) the replacement of the
center-of-mass by the position of the oxygen atom and (b) the evaluation of the
mean square acceleration of the oxygen atom without taking into account the
effects of constraint forces. Using a simulated oxygen-oxygen pair correlation
function, we (VC and AD) obtained
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Fig. 2. Incoherent intermediate scattering function for hydrogen (solid line) and oxygen (broken
line) at q = 10 nm–1. The inset shows a zoom on the intermediate scattering functions for small
times.

(2)
which is compatible with the quasielastic neutron scattering data.

The inset of Fig. 1 shows that the first order memory function of Fs(q,t) for
the hydrogen atoms (solid line) and the oxygen atoms (dashed-dotted line) ob-
tained from MD simulation, and the corresponding model memory function ob-
tained from the parameters of the fit (dashed line). One recognizes that the latter
agrees for short times much better with the memory function for the oxygen
atoms than with the one for the hydrogen atoms. Fig. 2 confirms the above
observations in the sense that the long time behavior of the intermediate scatter-
ing function is the same for hydrogen as for oxygen. Only the short time behavior
is different (see inset). We note here that the simulated intermediate scattering
functions have been obtained for q = 10 nm–1, using autoregressive modeling,
with 400 poles and a sampling time step of 10 fs.

To understand why quite different memory functions can lead to a very simi-
lar relaxation behavior of the associated correlation functions we consider the
corresponding relaxation or friction constants,

(3)

At q = 10 nm–1 (Fig. 2) one finds γ = 0.31 ps–1 for hydrogen and γ = 0.28 ps–1

for oxygen. As a rough approximation one may set F(t) ≈ exp[–γ(q) t], which
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becomes an exact relation in the regime of Brownian motion. This type of motion
is explored in the hydrodynamic limit, q / 0. In this case one may write

(4)
showing that γ ≈ Dq2, where D is the diffusion coefficient. For small but finite
values of q (here q = 10 nm–1) one obtains thus estimations of the diffusion
coefficients for hydrogen and and oxygen: DH ≈ 3.1 · 10–5 cm2

.s, DO ≈ 2.8 ·
10–5 cm2

.s. These values are slightly above the diffusion coefficient of D = 2.55
· 10–5 cm2

.s which is found from the mean square displacement for both hydro-
gen and oxygen and which is close to the experimental value of D = 2.23 · 10–5

cm2
.s found by NMR measurements [27].

4.2 Modeling the full hydrogen dynamics

The next question to be asked is if the analytical model introduced above is also
able to describe the full dynamics of the hydrogen atoms in water and not only
slow diffusive motions, which are described by the oxygen atoms whose posi-
tions almost coincide with the center-of-mass. Here not only slow diffusive mo-
tions are to be described, but also faster intermolecular vibrations and molecular
librations. As already mentioned, the rigid-body representation of a water mole-
cule corresponds to the physical situation encountered in the scattering of thermal
neutrons by small molecules in general, since internal vibrations cannot be ex-
cited in this case. It is also the basis of the SPC.E model for water which has
been used in the simulations. Within the model for Fs(q,t), the Einstein fre-
quency, Ω, and the mean square velocity of the scattering atom, ) v2

*, are to be
considered as input parameters which can be, in principle, obtained from first
principles, according Eqs. (46) and (39). The calculation of the Einstein fre-
quency according to (46) is, however, beyond the scope of this article since it is
less straightforward than in the case of simple liquids (compare Expression (1)).
For this reason we use the value obtained from MD simulation. From the initial
values of the first order memory function of the VACF (see insert of Fig. 3) we
find for the hydrogen atoms [12]

This value is to be compared to

for the oxygen atoms. Both the VACFs of hydrogen and oxygen have been
obtained from a 100 ps MD trajectory using autoregressive modeling [25,26]
with 400 poles and a sampling time step of 10 fs.

As for the atomic mean square velocity we use the exact value,

(5)

where Meff is the effective mass of the atom under consideration, which has been
determined according to expression (38). We consider the geometry of the SPC.E
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Fig. 3. VACF for hydrogen (solid line) and oxygen (broken line). The inset show the corre-
sponding memory functions.

water model, where the water molecules are rigid, with fixed O–H bond lengths
of 1 Å and with a fixed H–O–H angle of 109.47°. The masses are mH1 = mH2 =
1.008 and mO = 16, using atomic mass units. This leads to the three distance
constraints,

where all lengths are measured in Å. Constructing A according to (27) and M

according to (32), the pseudoinverse mass matrix Mc
+ can be obtained from

expression (35). From the resulting matrix the block matrices m11
+, m22

+, and
m33

+ can be extracted, and the effective masses are computed according to defini-
tion (38). Here 1,2,3 correspond, respectively, to H1, H2, and O. The result is [11]
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Fig. 4. Log-log plot of the incoherent dynamic structure factor for liquid water at ambient
temperature and pressure from MD simulation (solid lines) and the corresponding fits of the
analytical model (dotted lines) . The different curves correspond to (from bottom to top) q =
5 nm–1, q = 10 nm–1, q = 20 nm–1, q = 32 nm–1, q = 52 nm–1, respectively. The parameters of
the fits are given in Table 1. The inset shows the coherent intermediate scattering function as
a function of q for different times. Part of the data have been taken from Ref. [12].

The corresponding mean square velocities are ) vH
2

* = 1.315 nm2
.ps2 and

) vO
2

* = 0.146 nm2
.ps2. These theoretical values may be compared to ) vH

2
* =

1.330 nm2
.ps2 and ) vO

2
* = 0.147 nm2

.ps2 which we obtained from the MD
trajectories.

Taking ) vH
2

* and ΩH
2 as fixed parameters, we fitted the dynamic structure

factor of the model to the simulated incoherent dynamic structure factor in order
to obtain the model parameters α, τ1 and τ2. The results are shown in Fig. 4 and
Table 1 gives the respective fitted values for α, τ1 and τ2. The fits have been
performed at five different q-values, where q = 32 nm–1 and q = 52 nm–1 corre-
spond to the maxima of the structure factor which is shown in the inset of Fig. 4.
Fixing all parameters of the model to the values of the fit, we computed the
corresponding intermediate scattering function, the first and second order mem-
ory functions, and the density of states. The results are displayed in Figs. 5, 6,
and 7, respectively, (broken lines), as compared to the corresponding simulation
results (solid lines).

The dynamic structure factor of the model and the intermediate scattering
function have been obtained from expression (14), using in the first case relation
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Fig. 5. Incoherent intermediate scattering function for water at ambient temperature and pressure
from MD simulation (solid lines) and from the analytical model using the parameters given in
Table 1 (dotted lines). The different curves correspond to (from top to bottom) q = 5 nm–1, q =
10 nm–1, q = 20 nm–1, q = 32 nm–1, q = 52 nm–1, respectively.

(15) and performing in the second case an inverse Laplace transform. The model
DOS has been obtained using the fit parameters corresponding to q = 5 nm–1

(see Table 1). In principle one should consider the limit q / 0, but the latter
limit cannot be obtained numerically, and one must resort to considering the
smallest possible value for q, for which statistically meaningful results can be
obtained from the simulation. From the size of the cubic simulation box, which
is L = 1.9552 nm, it follows that qmin = 2π.L ≈ 3.2 nm–1 is the mathematically
smallest possible value for q.

To test the validity of the model, we computed the intermediate scattering
functions and the corresponding first and second order memory functions by the
method described in Section 3, using a short MD trajectory of 20 ps and autore-
gressive modeling with 1000 poles and a sampling time step of 2 fs. Fig. 5
shows that the incoherent intermediate scattering function is remarkably well
reproduced by the model, and the same is true for the first order memory func-
tions (left part of Fig. 6). Even the second order memory function (right part of
Fig. 6) shows the correct limiting behavior. Here we recall that the model param-
eters have been obtained from a fit to the simulated dynamic structure factor
only.
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Fig. 6. First order and second order memory functions of the incoherent intermediate scattering
function for water at ambient temperature and pressure for q = 10 nm–1 and q = 32 nm–1, as
obtained from AR analysis of MD trajectories (solid lines) and from the analytical model using
the parameters given in Table 1 (dotted lines). The insets show zooms on the corresponding
functions. Part of the data have been taken from Ref. [12].

It should be noted that the quality of the agreement between model and
simulation is reduced for higher frequencies with ω.2π ≥ 3 THz. We attribute
this finding to the fact that the fit yields two real and two complex conjugate
poles for F̂s(q,s). The whole inelastic spectrum is thus described by only two
poles and one cannot expect more than a semi-quantitative agreement for the
inelastic part of the dynamic structure factor and the density of states.

4.3 Diffusion coefficient

From the fitted parameters of the model one may also compute the diffusion
coefficient according to Eq. (18). Using the fit parameters of Table 1 for q =
5 nm–1 and ΩH

2 = 11881 ps–2, one obtains D = 3.28 · 10–5 cm2
.s, which is

somewhat above the reference value of D = 2.55 · 10–5 cm2
.s obtained from the

slope of the simulated mean square displacement of the hydrogen atoms. Here
we used that limq/ 0Fs(q,t) = exp(–Dq2 t), such that the diffusion coefficient of
the model should tend to the translational diffusion coefficient in the limit q /
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Fig. 7. Fourier transform of the average velocity autocorrelation function of the hydrogen atom
in water at ambient temperature and pressure obtained from MD simulation (solid line) and
from the analytical model using the parameters given in Table 1 (dotted line). The data have
been taken from Ref. [12].

Table 1. Fitted values for the parameters of the analytical model. The parameters have been
obtained from fits to the simulated dynamic structure factor shown in Fig. 1. The data have
been taken from Ref. [12].

q (nm–1) α τ1 (ps) τ2 (ps)
5 0.9840(3) 0.0139(3) 1.08(2)
10 0.969(2) 0.0141(8) 0.66(2)
20 0.973(3) 0.016(1) 0.57(3)
32 0.981(3) 0.0154(7) 0.41(5)
52 0.99(1) 0.013(1) 0.2(2)

0. The value of q = 5 nm–1 was again used as an approximation for the limit q
/ 0.

It should be noted that the diffusion coefficient obtained from the model is
close to the one obtained from the relation γ ≈ Dq2, where γ is the friction
constant defined in Eq. (3), using here the memory function of hydrogen. Alter-
natively one may use relation (19) and write D = ) v2

*.γv, where γv is the
integral over the first order memory function of the VACF. Using the same
parameters as for the calculation of the diffusion coefficient, one finds γv =
367.8 ps–1 for the friction constant of the model. The latter may be compared to
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the result of γv = 349.8 ps–1, which is obtained from a numerical integral over
the memory function of the VACF calculated from the MD trajectory. To esti-
mate the VACF we used in the latter case an autoregressive model of order P =
1000 with a sampling time step of Δt = 0.001 ps and the fact that the friction
constant can be obtained via

(6)

using expression (3) with n = 1 and M(0)
> (z) = c> (z) h cvv, > (z). If the numerical

value of γv = 349.8 ps–1 is inserted into relation (19), one obtains D = 3.76 ·
10K5 cm2

.s.

5. Conclusion

In this article we have shown how theory and simulation may be combined to
develop simple but realistic models for the dynamics of liquid water. Using in-
depth analyses of MD trajectories of liquid water we were able to show that the
validity of an existing model for the center-of-mass dynamics can be considera-
bly extended to describe not only the diffusive motions seen in quasielastic neu-
tron scattering experiments, but also faster motions, such as intermolecular vibra-
tions and molecular librations. The point of departure was a Mori-Zwanzig type
model for the intermediate self scattering function, in which the corresponding
second order memory function is represented by a weighted sum of two exponen-
tials. We have shown how this model can be extended to describe also the atomic
dynamics in liquids consisting of rigid or semi-rigid molecules. This extension
concerns the mean square velocity, for which an analytical expression can be
derived from the molecular geometry, and the so-called Einstein frequency,
which is the initial value of the memory function associated with the velocity
autocorrelation function. For the latter quantity we have derived a formal expres-
sion, which is, however, yet difficult to handle in practice. For this reason we
used the numerical values of the Einstein frequencies for oxygen and hydrogen
obtained from the MD simulations.

An important technical point in our study was the use of an improved numeri-
cal method for the calculation of memory functions, which yields better numeri-
cal stability compared to earlier work, and enables the calculation of higher
order memory functions in a particularly simple way. We applied the method in
particular to compute the first and second order memory functions for the inco-
herent intermediate scattering function, which are the pivot elements in the ana-
lytical model discussed in this article.

Our results demonstrate that the intermediate self-scattering function of the
hydrogen atoms, the corresponding dynamic structure factor, and the associated
first order memory function are well reproduced by the analytical model if appro-
priate values are used for mean square velocity and the Einstein frequency. It
should be stressed that the simple bi-exponential form of the second order mem-
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ory function yields the correct limiting behavior of its numerical counterpart for
small and long times.

As for the slow diffusive dynamics, we have shown that the integrals over
the memory functions for the incoherent intermediate scattering function of hy-
drogen and oxygen, respectively, have very similar values, although the form of
the memory functions differs considerably. Since it is essentially the integral of
the memory function which determines the slow relaxation and diffusion dynam-
ics in liquids, this finding is consistent with the fact that the long time diffusion
coefficient for different reference points in a rigid molecule is the same. The
different form of the memory functions for hydrogen and oxygen atoms in a
water molecule is essentially reflected in the different short time behavior of the
corresponding intermediate scattering functions.

We have also shown that the model diffusion coefficient obtained from the
fit parameters is somewhat overestimated, as compared to the value obtained
from the slope of the simulated mean square displacement of the hydrogen at-
oms, which is close to the experimental value obtained by NMR measurements.
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